

PRODUCCIÓN DE BIOCHAR PARA REDUCIR LA HUELLA DE CARBONO DEL VINO

universidad deleón

J.M. Ubalde ¹, E. Crivillés ¹, E. Payán ¹, J.G. Rosas ², N. Gómez ², J. Cara ², O. Martínez ² M.E. Sánchez ², A. Morán ², A. Martínez ³, O. López ³, M. Camps Arbestain ⁴

- ¹ Bodegas Miguel Torres, C/Miquel Torres i Carbó 6, 08720 Vilafranca del Penedès (Barcelona), España
- ² Instituto de Recursos Naturales, Universidad de León, Avenida de Portugal 41, 24071 León, España
- ³ Mecanotaf S.A., San Julián de la Vega, 27614 Sarria (Lugo), España
- ⁴ New Zealand Biochar Research Centre, Massey University, Palmerston North, Nueva Zelanda

DISEÑO DE LA PLANTA DE PIRÓLISIS

BIOMASA

Proviene de cepas que han sido arrancadas por llegar al final de su ciclo (30 – 40 años). Durante este tiempo, las cepas acumulan **25-35** tn CO₂/ha. Si esta biomasa se quema, estas tn de CO₂ vuelven a la atmosfera. Con la carbonización de estos restos, se pretende inmovilizar este carbono.

REACTOR DE PIRÓLISIS LENTA

El reactor es dónde se realiza la transformación de la biomasa en biochar, mediante el proceso de la pirólisis, que no es más que un calentamiento a altas temperaturas en ausencia de oxígeno. En este caso, se trata de una pirólisis lenta o carbonización.

En este estudio, el biochar se produjo a 550 °C +/- 20% y 30 min de tiempo de residencia de los sólidos.

Algunas ventajas de esta planta de pirólisis es que la alimentación de la biomasa es de forma contínua y además fácilmente transportable. El reactor es autotérmico.

Caracterización de la biomasa y el biochar

	Biomasa	Biochar			
Humedad	9,5	6,8			
Volátiles ^a	69,6	12,9			
Cenizas ^a	15	31			
Carbono fijado ^a	15,4	56,1			
Carbono ^b	47,32	91,43			
Hidrogeno ^b	5,34	1,26			
Nitrógeno ^b	0,49	0,72			
Azufre ^b	0,17	0,06			
Oxígeno ^b	46,68	6,53			
HHV (MJ/kg)	15,43	21,91			
tare me					

^a % base seca, ^b % base seca libre de cenizas

BIOCHAR

Principales características del reactor de pirólisis

Capacidad de trabajo	50-60 kg/h
Temperatura de trabajo	550-750 °C
Rendimiento biochar	25-35 %

ANÁLISIS DE CICLO DE VIDA

= 18 g/botella

APLICACIÓN DEL BIOCHAR COMO ENMIENDA DEL SUELO

Los primeros resultados indican que la mezcla del biochar con el compost mejora el estado nutricional de los viñedos, si se compara con la aplicación de compost solo.

Análisis peciolares y desarrollo vegetativo.

	Control	Biochar	Biochar x Compost	Compost	ANOVA (p level)
N (%)	0,6 b	0,6 b	1,7 a	1,0 ab	0,023
Mg (%)	0,8 a	0,7 a	0,2 b	0,6 ab	0,016
Fe (ppm)	31,0 b	37,7 b	205,3 a	102,0 ab	0,030
Sarmientos por cepa (kg)	0,4 ab	0,4 b	0,5 ab	0,6 a	0,012

Letras diferentes indican diferencias significativas (p level < 0,05).